Keyword: electron
Paper Title Other Keywords Page
MOPSPP004 Investigation of K2CsSb Photocathodes ion, cathode, laser, vacuum 4
 
  • V. Bechthold, K. Aulenbacher, M.A. Dehn, S. Friederich
    IKP, Mainz, Germany
  • K. Aulenbacher
    HIM, Mainz, Germany
 
  Funding: BMBF-HOPE II
The interest in multi alkali antimonide photocathodes, e.g. K2CsSb, for future ERL projects like BERLinPro (Berlin Energy Recovery Linac Prototype) and MESA (Mainz Energy-Recovering Superconducting Accelerator) has grown in recent years. In particular for the case of RF-sources the investigation of the time response is of great importance. In Mainz we are able to synthesize these kinds of photocathodes and investigate their pulse response at 1 picosecond level using a radio frequency streak method. We present on the one hand the cathode plant which is used for synthesizing the multi alkali antimonide photocathodes and on the other hand first measurements showing pulse responses of K2CsSb at 400 nm laser wavelength. Furthermore, an analyzing chamber has been installed, which allows investigation of lifetime under laser heating and in-situ measurements of the work function using a UHV Kelvin Probe.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ERL2017-MOPSPP004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPSPP005 The Small Thermalized Electron Source at Mainz (STEAM) ion, cathode, emittance, simulation 9
 
  • S. Friederich, K. Aulenbacher
    IKP, Mainz, Germany
 
  Funding: Work supported by BMBF-HOPE II and DFG through RTG 2128.
The Small Thermalized Electron Source at Mainz (STEAM) is a photoelectron source which will be operated using NEA GaAs excited near its band gap with an infrared laser wavelength to reach smallest emittances. CST simulations indicate that emittance growth due to vacuum space charge effects can be controlled up to bunch charges of several tens of pC. The goal of the project is to demonstrate that the intrinsical high brightness can still be achieved at such charges. The current status will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ERL2017-MOPSPP005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPSPP006 SPOCK - a Triode DC Electron Gun With Variable Extraction Gradient ion, cathode, controls, emittance 13
 
  • L.M. Hein, K. Aulenbacher, V. Bechthold, M.A. Dehn, S. Friederich, C. Matejcek
    IKP, Mainz, Germany
 
  Funding: German Federal Ministry of Education and Research (BMBF project HOPE-II FKZ 05K16UMA) and the Cluster of Excellence "PRISMA
The electron source concept SPOCK (Short Pulse Source at KPH) is a 100kV DC source design with variable extraction gradient. Due to its triode inspired design the extraction gradient can be reduced for e.g. investigations of cathode physics, but also enhanced to mitigate space charge effects. In the framework of the MESA-Project (Mainz Energy-Recovering Superconducting Accelerator) its design has been further optimized to cope with space charge dominated electron beams. Although it injects its electron beams directly into the LEBT matching section, which excludes any adjustments of the electron spin, the source SPOCK will allow higher bunch charges than the MESA standard source.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ERL2017-MOPSPP006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPSPP007 Beam Dynamics and Collimation Following MAGIX at MESA ion, target, simulation, collimation 17
 
  • B. Ledroit, K. Aulenbacher
    IKP, Mainz, Germany
 
  Funding: Supported by the DFG through GRK 2128
The Mainz Energy-recovering Superconducting Accelerator (MESA) will be an electron accelerator allowing operation in energy-recovery linac (ERL) mode. After the beam hits the target at the MESA Internal Gas Target Experiment (MAGIX), the beam is phase shifted and recirculated back into the linac sections. These will transfer the kinetic beam energy back to the RF-field by deceleration of the beam and allow for high beam power with low RF-power input. Since most of the beam does not interact with the target, the beam will mostly just pass the target untouched. However, a fraction of the scattered electrons may be in the range outside the accelerator and detector acceptances and therefore cause malicious beam dynamical behavior in the linac sections or even damage to the machine. The goal of this work is to determine the beam behavior upon target passage by simulation and experiment and to protect the machine with a suitable collimation system. The present status of the investigations is presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ERL2017-MOPSPP007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOIDCC002 Novosibirsk ERL Facility ion, FEL, undulator, cavity 33
 
  • N.A. Vinokurov, V.M. Borin, I.V. Davidyuk, O.I. Deichuli, E.N. Dementyev, B.A. Dovzhenko, Ya.V. Getmanov, Ya.I. Gorbachev, B.A. Knyazev, E.I. Kolobanov, A.A. Kondakov, V.R. Kozak, E.V. Kozyrev, S.A. Krutikhin, V.V. Kubarev, G.N. Kulipanov, E.A. Kuper, I.V. Kuptsov, G.Y. Kurkin, L.E. Medvedev, O.I. Meshkov, S.V. Motygin, A.A. Murasev, V.N. Osipov, V.K. Ovchar, V.M. Petrov, A.M. Pilan, V.M. Popik, V.V. Repkov, T.V. Salikova, M.A. Scheglov, I.K. Sedlyarov, S.S. Serednyakov, O.A. Shevchenko, A.N. Skrinsky, S.V. Tararyshkin, V.G. Tcheskidov, A.G. Tribendis, P. Vobly, V. Volkov
    BINP SB RAS, Novosibirsk, Russia
  • I.V. Davidyuk, Ya.V. Getmanov, B.A. Knyazev, E.V. Kozyrev, S.S. Serednyakov, N.A. Vinokurov
    NSU, Novosibirsk, Russia
  • V.L. Dorokhov
    BINP, Novosibirsk, Russia
  • A.G. Tribendis
    NSTU, Novosibirsk, Russia
 
  The first project of the four turn ERL for Novosibirsk FELs (NovoFEL) was proposed at FEL'90 Conference. Later the project was modified, but the base lines kept: a four turn normal conductance linac with energy recovery, low RF cavities (180 MHz), grid controlled DC gun (Q~1 nC, tau=1 nsec, f rep = 10 kHz-50 MHz). The ERL can operate in the three modes, providing an electron beam for the three different FELs (from 300 μm up to 5 μm). Construction and commissioning four track ERL was divided on three stage: the first stage NovoFEL working in spectral range (90-240) μm, based on one track energy recovery linac (ERL) with energy 12 MeV and current 30 mA, was commissioned in 2003. The second stage of NovoFEL working in spectral range (35-80) μm, based on two track energy recovery linac with energy 22 MeV and current 7 mA, was commissioned in 2009. The third stage of NovoFEL working in spectral range (8-15) μm, based on four track energy recovery linac with energy 42 MeV and current 5 mA was commissioned in 2015.  
slides icon Slides MOIDCC002 [13.703 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ERL2017-MOIDCC002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEIBCC004 Studies of CSR and Microbunching at the Jefferson Laboratory ERLs ion, bunching, emittance, linac 59
 
  • C. Tennant, S.V. Benson, D. Douglas, R. Li
    JLab, Newport News, Virginia, USA
  • C.-Y. Tsai
    SLAC, Menlo Park, California, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
One attractive feature of energy recovery linacs (ERLs) is they are source limited. However as beam brightness increases so too do the effects of coherent synchrotron radiation (CSR) and the microbunching instability. The Low Energy Recirculator Facility at Jefferson Laboratory provides a test bed to characterize aspects of CSR's effect on the beam by measuring the energy extraction via CSR as a function of bunch compression. Data was recorded with acceleration occuring on the rising part of the RF waveform while the full compression point was moved along the backleg of the machine and the response of the beam measured. Acceleration was moved to the falling part of the RF waveform and the experiment repeated. Initial start-to-end simulations using a 1D CSR model show good agreement with measurements. The experiment motivated the design of a modified Continuous Electron Beam Accelerator Facility style arc with control of CSR and the microbunching gain. Insights gained from that study informed designs for recirculation arcs in an ERL-driven electron cooler for Jefferson Laboratory's Electron Ion Collider. Progress on the design and outstanding challenges of the cooler are discussed.
 
slides icon Slides WEIBCC004 [14.419 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ERL2017-WEIBCC004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEICCC004 First Results of Commissioning DC Photo-Gun for RHIC Low Energy Electron Cooler (LEReC) ion, gun, cathode, operation 65
 
  • D. Kayran, Z. Altinbas, D. Bruno, M.R. Costanzo, A.V. Fedotov, D.M. Gassner, X. Gu, L.R. Hammons, P. Inacker, J.P. Jamilkowski, J. Kewisch, C.J. Liaw, C. Liu, K. Mernick, T.A. Miller, M.G. Minty, V. Ptitsyn, T. Rao, J. Sandberg, S. Seletskiy, P. Thieberger, J.E. Tuozzolo, E. Wang, Z. Zhao
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy
Non-magnetized bunched electron cooling of ion beams during low energy RHIC operation requires electron beam energy in the range of 1.6-2.6 MeV, with an average current up to 45 mA, very small energy spread, and low emittance. A 400 kV DC gun equipped with a photocathode and laser system will provide a source of high-quality electron beams. During DC gun test critical elements of LEReC such as laser beam system, cathode exchange system, cathode QE lifetime, DC gun stability, beam instrumentation, the high-power beam dump system, machine protection system and controls has been tested under near- operational conditions [1]. We present the status, experimental results and experience learned during the LEReC DC gun beam testing.
[1] D. Kayran et al., DC Photogun Gun Test for RHIC Low Energy Electron Cooler (LEReC), NAPAC2016 proceedings, WEPOB54.
 
slides icon Slides WEICCC004 [20.769 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ERL2017-WEICCC004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRIBCC001 ERL17 Workshop, WG1 Summary: Injectors ion, cathode, gun, SRF 77
 
  • E. Wang
    BNL, Upton, Long Island, New York, USA
  • K. Aulenbacher
    HIM, Mainz, Germany
 
  The 59th ICFA Advance Beam Dynamics Workshop on Energy Recovery Linacs, hosted by the CERN was held on CERN campus. The working group (WG) 1 ERL injectors focused on high-brightness, high-power CW electron gun and high QE long lifetime semiconductor photocathode. The working group 1 was separated into two sessions: One is electron gun session, which has eight invited talks; another is photocathode session, which has six invited talks and one contributed talk. This report summarizes the state of the art of electron guns and photocathodes discussed in the ERL workshop WG1.  
slides icon Slides FRIBCC001 [3.229 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ERL2017-FRIBCC001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)