Keyword: lattice
Paper Title Other Keywords Page
MOPSPP009 Beam Break Up Simulations for the MESA Accelerator ion, HOM, cavity, simulation 26
  • C.P. Stoll, F. Hug, D. Simon
    IKP, Mainz, Germany
  Funding: Supported by DFG through GRK 2128
MESA is a recirculating superconducting accelerator under construction at Johannes Gutenberg-Universität Mainz. It will be operated in two different modes: the first is the external beam (EB) mode, where the beam is dumped after being used at the experiment. The required beam current in EB mode is 150 μA with polarized electrons at 155 MeV. In the second operation mode MESA will be run as an energy recovery linac (ERL) with an unpolarized beam of 1 mA at 105 MeV. In a later construction stage of MESA the achievable beam current in ERL-mode shall be upgraded to 10 mA. To understand the behavior of the superconducting cavities under recirculating operation with high beam currents simulations of beam breakup have to be performed. Current results for transverse beam break up calculations and simulations with Beam Instability (bi) code are presented.
DOI • reference for this paper ※  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
THICCC002 Study of Microbunching Instability in MESA ion, space-charge, bunching, experiment 74
  • A. Khan, O. Boine-Frankenheim
    Institut Theorie Elektromagnetischer Felder, TU Darmstadt, Darmstadt, Germany
  • K. Aulenbacher
    IKP, Mainz, Germany
  Funding: Supported by the DFG through GRK 2128
The Institute for Nuclear Physics (KPH) at Mainz is building a multi-turn energy recovery linear accelerator, the Mainz Energy-recovering Superconducting Accelerator (MESA), to deliver a CW beam at 105 MeV with short pulses, high current and small emittance for physics experiments with an internal target. Space charge effects potentially cause beam quality degradation for medium energy beams in smaller machines like MESA. As beam quality preservation is a major concern in an ERL during recirculation. We present a study on Microbunching Instability (MBI) caused by Longitudinal Space Charge (LSC) in MESA. Our results demonstrate the impact of the MESA arc lattice design on the development of Microbunching Instability.
slides icon Slides THICCC002 [3.365 MB]  
poster icon Poster THICCC002 [1.232 MB]  
DOI • reference for this paper ※  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
FRIBCC002 ERL17 Workshop, WG2 Summary: Optics, Beam Dynamics and Instrumentation ion, bunching, operation, simulation 79
  • S.A. Bogacz
    JLab, Newport News, Virginia, USA
  • D. Schulte
    CERN, Geneva, Switzerland
  During the workshop a number of interesting projects were discussed: ERL at KEK, ALICE, PERLE, LHeC, eRHIC, CBETA, ERL for MESA and BERLinPro; a nice mixture of future, existing and past facilities. A rather vigorous development of new ERLs is aggressively pushing the limits: maximizing number of passes, maximizing virtual beam power, opening longitudinal acceptance, mitigation of limiting factors: BBU, CSR/microbunching, diagnostics and Instrumentation for multiple beams, multiparticle tracking studies of dark current and halo formation. A bright future can be expected for the field.  
slides icon Slides FRIBCC002 [1.792 MB]  
DOI • reference for this paper ※  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)