Keyword: solenoid
Paper Title Other Keywords Page
MOPSPP008 Low Energy Beam Transport System for MESA ion, simulation, cavity, space-charge 20
 
  • C. Matejcek, K. Aulenbacher, S. Friederich, L.M. Hein
    IKP, Mainz, Germany
 
  An important part of the new accelerator MESA (Mainz Energy recovering Superconducting Accelerator) is the low energy beam transport system connecting the 100 keV electron source with the injector accelerator. Here the spin manipulation and the bunch preparation for the injector accelerator take place. Due to the low energy, space charge will be an challenging issue in this part. Therefore, start-to-end simulations were done with a combination of the two particle dynamics codes PARMELA* and CST**. At the moment, a test setup is being built up to check the functionality of devices and compare the beam parameters with the simulation. Here the focus lies on the bunch preparation system because at this part we expect high impact of the space charge by reason of the necessary bunch compression. The advance of the test setup, the simulations and measurements done so far will be shown.
* Phase and Radial Motion in Ion Linear Accelerators
** Computer Simulation Technology
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ERL2017-MOPSPP008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUIACC001 LERF - New Life for the Jefferson Lab FEL ion, target, operation, linac 45
 
  • C. Tennant, S.V. Benson, J.R. Boyce, J.L. Coleman, D. Douglas, S.L. Frierson, J. Gubeli, C. Hernandez-Garcia, K. Jordan, C. Keith, R.A. Legg, M.D. McCaughan, T. Satogata, M. Spata, M.G. Tiefenback, S. Zhang
    JLab, Newport News, Virginia, USA
  • R. Alarcon, D. Blyth, R.A. Dipert, L. Ice, G. Randall, B.N. Thorpe
    Arizona State University, Tempe, USA
  • J. Balewski, J.C. Bernauer, J.C. Bessuille, R. Corliss, R.F. Cowan, C. Epstein, P.F. Fisher, I. Friščić, D.K. Hasell, E. Ihloff, J. Kelsey, Y.-J. Lee, R. Milner, P. Moran, D. Palumbo, S. Steadman, C. Tschalär, C. Vidal, Y. Wang
    MIT, Cambridge, Massachusetts, USA
  • T. Cao, B. Dongwi, P. Guèye, N. Kalantarians, M. Kohl, A. Liyanage, J. Nazeer
    Hampton University, Hampton, Virginia, USA
  • R. Cervantes, A. Deshpande, N. Feege
    Stony Brook University, Stony Brook, USA
  • K. Dehmelt
    SUNY SB, Stony Brook, New York, USA
  • P.E. Evtushenko
    HZDR, Dresden, Germany
  • M. Garçon
    CEA/DRF/IRFU, Gif-sur-Yvette, France
  • B. Surrow
    Temple University, Philadelphia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
In 2012 Jefferson Laboratory's energy recovery linac (ERL) driven Free Electron Laser successful completed a transmission test in which high current CW beam (4.3 mA at 100 MeV) was transported through a 2 mm aperture for 7 hours with beam losses as low as 3 ppm. The purpose of the run was to mimic an internal gas target for DarkLight* - an experiment designed to search for a dark matter particle. The ERL was not run again until late 2015 for a brief re-commissioning in preparation for the next phase of DarkLight. In the intervening years, the FEL was rebranded as the Low Energy Recirculator Facility (LERF), while organizationally the FEL division was absorbed into the Accelerator division. In 2016 several weeks of operation were allocated to configure the machine for Darklight with the purpose of exercising - for the first time - an internal gas target in an ERL. Despite a number of challenges, including the inability to energy recover, beam was delivered to a target of thickness 1018 cm-2 which represents a 3 order of magnitude increase in thickness from previous internal target experiments. Details of the machine configuration and operational experience will be discussed.
* J. Balewski et al., A Proposal for the DarkLight Experiment at the Jefferson Laboratory Free Electron Laser, May 2012.
 
slides icon Slides TUIACC001 [23.840 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ERL2017-TUIACC001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)