Keyword: space-charge
Paper Title Other Keywords Page
MOPSPP008 Low Energy Beam Transport System for MESA ion, simulation, cavity, solenoid 20
 
  • C. Matejcek, K. Aulenbacher, S. Friederich, L.M. Hein
    IKP, Mainz, Germany
 
  An important part of the new accelerator MESA (Mainz Energy recovering Superconducting Accelerator) is the low energy beam transport system connecting the 100 keV electron source with the injector accelerator. Here the spin manipulation and the bunch preparation for the injector accelerator take place. Due to the low energy, space charge will be an challenging issue in this part. Therefore, start-to-end simulations were done with a combination of the two particle dynamics codes PARMELA* and CST**. At the moment, a test setup is being built up to check the functionality of devices and compare the beam parameters with the simulation. Here the focus lies on the bunch preparation system because at this part we expect high impact of the space charge by reason of the necessary bunch compression. The advance of the test setup, the simulations and measurements done so far will be shown.
* Phase and Radial Motion in Ion Linear Accelerators
** Computer Simulation Technology
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ERL2017-MOPSPP008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THICCC002 Study of Microbunching Instability in MESA ion, bunching, lattice, experiment 74
 
  • A. Khan, O. Boine-Frankenheim
    Institut Theorie Elektromagnetischer Felder, TU Darmstadt, Darmstadt, Germany
  • K. Aulenbacher
    IKP, Mainz, Germany
 
  Funding: Supported by the DFG through GRK 2128
The Institute for Nuclear Physics (KPH) at Mainz is building a multi-turn energy recovery linear accelerator, the Mainz Energy-recovering Superconducting Accelerator (MESA), to deliver a CW beam at 105 MeV with short pulses, high current and small emittance for physics experiments with an internal target. Space charge effects potentially cause beam quality degradation for medium energy beams in smaller machines like MESA. As beam quality preservation is a major concern in an ERL during recirculation. We present a study on Microbunching Instability (MBI) caused by Longitudinal Space Charge (LSC) in MESA. Our results demonstrate the impact of the MESA arc lattice design on the development of Microbunching Instability.
 
slides icon Slides THICCC002 [3.365 MB]  
poster icon Poster THICCC002 [1.232 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ERL2017-THICCC002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)