Keyword: target
Paper Title Other Keywords Page
MOPSPP007 Beam Dynamics and Collimation Following MAGIX at MESA ion, simulation, collimation, electron 17
 
  • B. Ledroit, K. Aulenbacher
    IKP, Mainz, Germany
 
  Funding: Supported by the DFG through GRK 2128
The Mainz Energy-recovering Superconducting Accelerator (MESA) will be an electron accelerator allowing operation in energy-recovery linac (ERL) mode. After the beam hits the target at the MESA Internal Gas Target Experiment (MAGIX), the beam is phase shifted and recirculated back into the linac sections. These will transfer the kinetic beam energy back to the RF-field by deceleration of the beam and allow for high beam power with low RF-power input. Since most of the beam does not interact with the target, the beam will mostly just pass the target untouched. However, a fraction of the scattered electrons may be in the range outside the accelerator and detector acceptances and therefore cause malicious beam dynamical behavior in the linac sections or even damage to the machine. The goal of this work is to determine the beam behavior upon target passage by simulation and experiment and to protect the machine with a suitable collimation system. The present status of the investigations is presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ERL2017-MOPSPP007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUIACC001 LERF - New Life for the Jefferson Lab FEL ion, operation, solenoid, linac 45
 
  • C. Tennant, S.V. Benson, J.R. Boyce, J.L. Coleman, D. Douglas, S.L. Frierson, J. Gubeli, C. Hernandez-Garcia, K. Jordan, C. Keith, R.A. Legg, M.D. McCaughan, T. Satogata, M. Spata, M.G. Tiefenback, S. Zhang
    JLab, Newport News, Virginia, USA
  • R. Alarcon, D. Blyth, R.A. Dipert, L. Ice, G. Randall, B.N. Thorpe
    Arizona State University, Tempe, USA
  • J. Balewski, J.C. Bernauer, J.C. Bessuille, R. Corliss, R.F. Cowan, C. Epstein, P.F. Fisher, I. Friščić, D.K. Hasell, E. Ihloff, J. Kelsey, Y.-J. Lee, R. Milner, P. Moran, D. Palumbo, S. Steadman, C. Tschalär, C. Vidal, Y. Wang
    MIT, Cambridge, Massachusetts, USA
  • T. Cao, B. Dongwi, P. Guèye, N. Kalantarians, M. Kohl, A. Liyanage, J. Nazeer
    Hampton University, Hampton, Virginia, USA
  • R. Cervantes, A. Deshpande, N. Feege
    Stony Brook University, Stony Brook, USA
  • K. Dehmelt
    SUNY SB, Stony Brook, New York, USA
  • P.E. Evtushenko
    HZDR, Dresden, Germany
  • M. Garçon
    CEA/DRF/IRFU, Gif-sur-Yvette, France
  • B. Surrow
    Temple University, Philadelphia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
In 2012 Jefferson Laboratory's energy recovery linac (ERL) driven Free Electron Laser successful completed a transmission test in which high current CW beam (4.3 mA at 100 MeV) was transported through a 2 mm aperture for 7 hours with beam losses as low as 3 ppm. The purpose of the run was to mimic an internal gas target for DarkLight* - an experiment designed to search for a dark matter particle. The ERL was not run again until late 2015 for a brief re-commissioning in preparation for the next phase of DarkLight. In the intervening years, the FEL was rebranded as the Low Energy Recirculator Facility (LERF), while organizationally the FEL division was absorbed into the Accelerator division. In 2016 several weeks of operation were allocated to configure the machine for Darklight with the purpose of exercising - for the first time - an internal gas target in an ERL. Despite a number of challenges, including the inability to energy recover, beam was delivered to a target of thickness 1018 cm-2 which represents a 3 order of magnitude increase in thickness from previous internal target experiments. Details of the machine configuration and operational experience will be discussed.
* J. Balewski et al., A Proposal for the DarkLight Experiment at the Jefferson Laboratory Free Electron Laser, May 2012.
 
slides icon Slides TUIACC001 [23.840 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ERL2017-TUIACC001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)